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1 Introduction and summary

Electric-magnetic duality, such as S-duality in N = 4 super Yang-Mills, maps electrically

charged excitations in one theory to magnetically charged ones in the dual theory. In the

conventional formulation of gauge theories, magnetically charged objects are not included

as integration variables in the path integral. Rather, they are realized via non-trivial field

configurations of the electric variables. The magnetic analog of the Wilson loop operator [1],

i.e. the ’t Hooft loop operator [2], which inserts a magnetically charged source, is defined

by a singular field configuration of the electric variables.

Even though an ’t Hooft loop is a disorder operator, defined by prescribing a singularity

along the loop, it shares features associated with ordinary operators, which are character-

ized by gauge invariant functions of the electric variables of the theory. For example, just

as the potential generated by a distribution of charges admits a multi-pole expansion, any

loop operator — an ’t Hooft (T ) or Wilson (W ) operator — appears as an infinite series of

local operators to an observer who probes the loop operator from a distance much larger

than the size of the loop:

Therefore an ’t Hooft operator, despite being a disorder operator, also admits an

operator product expansion (OPE) in terms of an infinite sum of local operators Oi.

A suitable arena where to study the OPE of loop operators and the action of electric-

magnetic duality on the OPE is N = 4 super Yang-Mill theory. S-duality [3–5] posits that

N = 4 super Yang-Mills with gauge groupG and coupling constant τ is equivalent toN = 4
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T or W
=

∑

i

Oi

Figure 1. The operator product expansion of a loop operator.

super Yang-Mills with dual gauge group LG [6] and dual coupling constant Lτ . The coupling

constants of the dual theories are related by the strong-weak coupling transformation

Lτ = − 1

ngτ
,

where

τ =
θ

2π
+

4πi

g2
, Lτ =

Lθ

2π
+

4πi

(Lg)2
,

and where ng = 1, 2 or 3 depending1 on the choice of gauge group G.

In N = 4 super Yang-Mills, ’t Hooft loop operators in the theory with gauge group G

are conjectured to transform under the action of S-duality into Wilson loop operators in

the dual theory, which has gauge group LG. Under S-duality electric and magnetic sources

are exchanged [7]

T (LR)←→W (LR) .

LR is an irreducible representation of LG, which labels [7] an ’t Hooft operator T (LR) in

the theory with gauge group G, as well as a Wilson operator W (LR) in the theory with

gauge group LG.

The recent paper [8] has explicitly demostrated that the prediction of S-duality for the

observables

〈
T (LR)

〉
G,τ

=
〈
W (LR)

〉
LG,Lτ

(1.1)

holds to next to leading order in the coupling constant expansion for supersymmetric

circular loops. This equality was proven by first giving a quantum definition of an ’t Hooft

operator, computing its expectation value to next to leading order in the weak coupling

expansion and comparing the result with the strong coupling expansion of the Wilson loop

expectation value in the dual theory [8].

S-duality conjecturally acts on all the gauge invariant operators in N = 4 super Yang-

Mills, both on local and non-local operators, thus defining an isomorphism between the

operators in the two dual descriptions

O ←→ LO .
1 Here ng = 1 for simply laced algebras; ng = 2 for so(2n + 1), sp(n) and f4; and ng = 3 for g2.
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This implies that the identification of the ’t Hooft and Wilson operators under the action

of S-duality should extend beyond matching of their expectation values (1.1). In par-

ticular, the S-duality conjecture relates the OPE of an ’t Hooft operator to that of the

corresponding dual Wilson loop in the dual theory. Their respective OPE’s are given by

T (LR) = 〈T (LR)〉
(

1 +
∑

i

bi a
∆iOi

)
,

W (LR) = 〈W (LR)〉
(

1 +
∑

i

Lci a
L∆i LOi

)
. (1.2)

Here ∆i (L∆i) is the conformal dimension of the operator Oi (LOi) and a is the radius

of the circle where the loop operators are supported. The OPE coefficients bi and Lci are

non-trivial functions of the coupling constant of the theory, the choice of representation LR

and the gauge group.

S-duality predicts that the ’t Hooft operator OPE coefficient bi of the local operator

Oi of one theory is mapped to the Wilson operator OPE coefficient Lci of the dual operator
LOi in the dual theory. The computation of the OPE coefficients of loop operators is closely

related to the computation of correlation functions of loop operators and local operators.

These correlation functions of loop and local operators should also transform into each

other under the action of S-duality.

In this paper we compute the correlation functions of a circular ’t Hooft and Wilson

loop operator with an arbitrary chiral primary operator (CPO) O∆ in N = 4 super Yang-

Mills. We show that the prediction of S-duality

〈T (LR) · O∆〉G,τ = 〈W (LR) · LO∆〉LG,Lτ (1.3)

holds to next to leading order in the coupling constant expansion. This result implies

that the coefficients of chiral primary operators in the OPE of a circular ’t Hooft operator

at weak coupling precisely match the corresponding OPE coefficients for the dual Wilson

operator at strong coupling:

b∆(LR, τ) = Lc∆(LR, Lτ).

Proving this requires computing the two point functions of chiral primary operators, which

are given by free field contractions. We show that the two and three-point functions of

chiral primary operators are invariant under the action of S-duality.

In this paper we also calculate the “scaling weight” [7] of the circular ’t Hooft operator

T (LR) at weak coupling and that of the circular Wilson operator W (LR) at strong coupling

in N = 4 super Yang-Mills. This observable, which measures the conformal properties of a

loop operator, is determined by the OPE of the loop operator with the stress-energy tensor.

We show that the scaling weight of an ’t Hooft operator T (LR) evaluated at weak coupling

exactly reproduces the scaling weight of the dual Wilson W (LR) evaluated at strong cou-

pling.

In summary, we perform novel computations with ’t Hooft operators in N = 4 SYM

and explicitly demonstrate the conjectured action of S-duality on these observables for
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arbitrary gauge group G. This provides a quantitative demonstration of the action of

electric-magnetic duality on correlation functions in N = 4 SYM.

The plan of the rest of the paper is as follows. In the next section we describe the OPE

of loop operators, the notion of the scaling weight of a loop operator, and the construction

of chiral primary operators in N = 4 super Yang-Mills with gauge group G. We also

spell out the S-duality map for chiral primary operators [9, 10]. In section 3, we compute

in perturbation theory the correlation function of an ’t Hooft operator with an arbitrary

chiral primary operator O∆ as well as the scaling weight of a circular ’t Hooft operator.

Section 4 is devoted to calculating in the strong coupling expansion the correlation func-

tion of a Wilson loop operator with O∆ as well as the scaling weight of a circular Wilson

loop operator. These calculations are performed by solving a matrix model. In section 5

we explicitly demonstrate the S-duality conjecture relating the ’t Hooft and Wilson loop

correlation functions by comparing our results for the ’t Hooft and Wilson loop correla-

tors. Appendix A discusses the Weyl transformation between R
4 and AdS2 × S2, while

appendix B provides examples of the construction of chiral primary operators for gauge

group G. Appendix C extends the equivalence of complex and normal matrix models for

general gauge group G. In appendix D, we show that the two and three-point functions of

chiral primary operators are invariant under the action of S-duality.

2 Loop operator OPE and S-duality

A loop operator can be expanded in a series of local operators when probed from a distance

much larger than the characteristic size of the loop. This defines the operator product ex-

pansion (OPE) of the loop operator [11, 12]. For an operator L supported on a circle

of radius a — a circular ’t Hooft or Wilson operator — the operator product expan-

sion is given by

L = 〈L〉
(

1 +
∑

i

Ci a∆iOi(0)

)
, (2.1)

where Ci is an OPE coefficient, Oi(0) is a local operator inserted at the center of the loop

and ∆i is its conformal dimension. The sum in (2.1) is over all conformal primary operators

in the theory as well as over the associated conformal descendant operators.

The OPE coefficients of conformal primary operators can be obtained from the corre-

lation function of the loop operator L with the primary operators Oi

〈L · Oi(x)〉 (2.2)

using the matrix of two-point functions 〈OiOj〉. These correlation functions involving loop

operators are the main objects of study in this paper.

As we show in appendix A, super Yang-Mills in the presence of a circular loop operator

on R
4 is Weyl equivalent to super Yang-Mills on AdS2×S2 with the loop operator inserted

on the boundary of AdS2 (the Poincaré disk). By symmetry the correlator is independent
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of the position of the local operator on AdS2 × S2. Weyl invariance of N = 4 super

Yang-Mills then determines the position dependence of the correlator on R
4:

〈L · Oi(x)〉
〈L〉 =

Ξi

r̃∆i
. (2.3)

The coupling Ξi captures the dynamical information of the correlator and our goal is to

compute Ξi for the circular ’t Hooft and Wilson loop operators in N = 4 super Yang-Mills

with an arbitrary gauge group G. The conformally invariant distance r̃ is given by

r̃ =

√
(r2 + x2 − a2)2 + 4a2x2

2a
,

which combines the radius a of the circle where the loop operator is supported, the radial

position r of the local operator in the plane containing the loop, and the position x of the

local operator in the plane transverse to the circle. The OPE coefficients are most easily

extracted by setting r = 0 and expanding (2.3) in powers of a/x. The leading order term

in this expansion of the correlator measures the OPE coefficient of the conformal primary

operator Oi while the rest of the terms in the a/x expansion capture the OPE coefficients

of the conformal descendants of Oi.

An operator that plays a central role in a conformal field theory is the stress-energy

tensor Tµν . The correlation function of a loop operator with the stress-energy tensor mea-

sures how the loop operator transforms under a conformal transformation, and generalizes

the familiar notion of conformal dimension of a local operator to a non-local operator. This

information is encoded in the “scaling weight” of the loop operator [7], which we also com-

pute for an ’t Hooft and Wilson operator in N = 4 super Yang-Mills with gauge group G.

A loop operator L supported on a circle of radius a preserves an SL(2,R) × SU(2)

subgroup of the Spin(1, 5) conformal group. Conformal invariance also completely fixes the

position dependence of the correlator of the loop operator with the stress-energy tensor.

When the theory is Weyl transformed from R
4 to AdS2×S2 in order to make the symmetries

of the circular loop operator manifest (see appendix A for more details), the correlator of

the loop operator L with the stress-energy tensor is given by [7, 13]

〈L · Tµν(x)dxµdxν〉
〈L〉 = hL

(
ds2AdS2

− ds2S2

)
+

a

8π2

(
ds2AdS2

+ ds2S2

)
, (2.4)

where hL is the scaling weight of the loop operator L, and the metrics on AdS2 and S2 are

denoted by ds2AdS2
and ds2S2 respectively. The last term in (2.4) captures the conformal

anomalies of the field theory on the AdS2 × S2 geometry. For N = 4 super Yang-Mills

with gauge group G, the anomaly coefficients are a = c = dim(G)/4, where dim(G) is the

dimension of the gauge group.

Chiral primary operators and S-duality. An interesting class of local operators with

which to probe an ’t Hooft or Wilson loop operator inN = 4 super Yang-Mills are the chiral

primary operators. The PSU(2, 2|4) superconformal algebra implies that chiral primary

operators of conformal dimension ∆ belong to a multiplet transforming in an SU(4)R

– 5 –
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representation with Dynkin label

[0,∆, 0].

In terms of the R-symmetry group SO(6) ≃ SU(4)R, these operators transform in the rank-

∆ symmetric traceless representation of SO(6). Without loss of generality, we consider the

highest weight vector in the [0,∆, 0] multiplet carrying charge ∆ under the U(1)R subgroup

for which the complex scalar field in the N = 4 vector multiplet

Z ≡ φ1 + iφ2

is the only one charged.2

Chiral primary operators involving only Z are given by G-invariant polynomials of

Z, and form a ring. The ring multiplication law is the usual operator product. These

operators are part of the usual N = 1 chiral ring, and are the lowest components of chiral

superfields with respect to a particular N = 1 subalgebra of N = 4. This ring has as many

generators as the rank r of the group G. Let us denote the polynomials generating the

G-invariant ring by

P1(Z), P2(Z), . . . , Pr(Z) . (2.5)

The degrees {νi} = {ν1, . . . , νr} of these polynomials Pi(Z) are the set of positive integers

that appear as the order of the Casimirs of G.3

In a group G admitting a Casimir of order ν, there exists a rank-ν invariant symmetric

tensor on the Lie algebra, which we denote by Ka1...aν , where ai = 1, . . . ,dim(G). Each

generator of the chiral ring (2.5) can be written in terms of such a tensor as

P (Z) = K(Z, . . . , Z) = Ka1...aνZ
a1 . . . Zaν ,

where Z ≡ ZaTa, and Ta are the generators of the Lie algebra. We list the generators of

the ring for several choices of G in appendix B.

The most general chiral primary operator constructed from Z is then given by

O∆ ≡
1

g∆
P∆(Z) , (2.6)

where4

P∆(Z) ≡
r∏

i=1

Pi(Z)Ni , (2.7)

and Ni are non-negative integers. In our convention a chiral primary operator (2.6) has

an explicit coupling constant dependence, while the polynomials Pi(Z) do not depend on

2The other operators in the [0, ∆, 0] multiplet for any ∆ take the form Ci1...i∆Ka1...a∆
φa1

i1
. . . φa∆

i∆
, where

Ci1...i∆ is a symmetric traceless tensor and Ka1...a∆
is defined by P (Z) = Ka1...a∆

Za1 . . . Za∆ .
3More precisely νi are the order of those Casimirs which generate the center of the universal enveloping

algebra. The integers νi − 1 are known as the exponents of G.
4In order to not clutter notation we do not make explicit the dependence of the operator on {Ni}.

– 6 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
2

Group G Order ν of Casimirs

An−1 = SU(n) 2, 3, . . . , n

Bn = SO(2n + 1) 2, 4, . . . , 2n

Cn = Sp(n) 2, 4, . . . , 2n

Dn = SO(2n) 2, 4, . . . , 2n − 2, n

E6 2, 5, 6, 8, 9, 12

E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30

F4 2, 6, 8, 12

G2 2, 6

Table 1. Casimirs for simple Lie groups.

the coupling as explained in appendix B. The conformal dimension of the chiral primary

operator (2.6) is given by

∆ =
r∑

i=1

Niνi .

Therefore the spectrum of conformal dimensions is determined by the order of the Casimirs

of G:

We are interested in the behaviour of chiral primary operators under the action of

S-duality, which exchanges the gauge group G with the dual gauge group LG

G←→ LG .

As in [10] we use the metric, normalized so that short coroots have length
√

2, to identify

the Cartan subalgebra of each group with its dual vector space, denoted by t and Lt for

G and LG respectively.5 For the dual groups G and LG, there is by definition a linear

transformation

t→ Lt (2.8)

that maps roots of G to coroots of LG. We denote this map by n
1/2
g R, where ng = 1, 2 or

3 is the ratio of the length-squared of the long and short roots in the Lie algebra g and R
is a norm-preserving linear transformation. The transformation n

1/2
g R−1 maps roots of LG

to coroots of G. The transformation R is unique up to the action of the Weyl group [6].

For simply laced groups, R can be taken to be the identity operator.

The conjecture [9, 10, 16] is that the ring generators, and therefore all operators in

the chiral ring for gauge groups G and LG are mapped into each other under the action of

S-duality. The precise proposed mapping is

O∆ =
1

g∆
P∆(Z)←→ LO∆ =

1
Lg∆

LP∆(LZ) , (2.9)

5Here we use the metrics on t and Lt to identify t with t∗ and Lt with Lt∗, respectively, while we make

explicit the isomorphism R : t → Lt. In [14] and [15] another convention was used where t∗ and Lt were taken

to be equal, while the isomorphisms t → t∗ and Lt → Lt∗, constructed using the metrics were made explicit.
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where the LG-invariant polynomial LP∆ of LZ ∈ LgC is uniquely determined by P∆ through

the relation

P∆(λ) = LP∆(Rλ), ∀λ ∈ t. (2.10)

The conjectured action of S-duality on chiral primary operators (2.9) is consistent with

the mathematical fact that {νi(G)} = {νi(
LG)}. For all gauge groups, G and LG share

the same Lie algebra except for SO(2n + 1) and Sp(n). Their Lie algebras are exchanged

under S-duality and have the same set of orders for Casimirs as seen in table 1. Other

For G = U(n) = LG, the map (2.9) is simply given by g−νtrZν ↔ (Lg)−νtr(LZ)ν . See

appendix B for more details on the S-duality map of chiral primary operators.

We note that for any choice of gauge group G there is a universal ∆ = 2 chiral pri-

mary operator

O2 =
1

g2
trZ2 ,

where tr(· ·) is the invariant quadratic form on g whose restriction to t is the metric on the

subalgebra. It was shown in [13] using supersymmetric Ward identities that the correlator

of a circular loop operator L with O2 can be related to the correlator (2.4) of the same

circular loop operator with the stress-energy tensor Tµν , which also universally exists for

any choice of G. This allows us to compute the scaling weight hL of a circular ’t Hooft

and Wilson loop operator in N = 4 super Yang-Mills with gauge group G in terms of the

conformal dimension two chiral primary operator coupling Ξ2 (2.3) using the formula [13]

hL = −4

3
Ξ2 . (2.11)

3 Quantum ’t Hooft loop correlators

In this section we compute the correlation function of a circular ’t Hooft operator with an

arbitrary chiral primary operator O∆(Z) in N = 4 super Yang-Mills with gauge group G.

We give explicit formulas for Ξ∆ (2.3) and for the scaling weight hT of the circular ’t Hooft

operator to next to leading order in the weak coupling expansion. Before delving into the

details of these computations we first give a minimal discussion of ’t Hoof operators in

N = 4 super Yang-Mills.

An ’t Hooft operator inserts a magnetically charged source into the theory. In a theory

with gauge group G an ’t Hooft operator is labeled [7] by a representation LR of the dual

group LG [6]. We denote an ’t Hooft operator labeled by a representation LR by T (LR).

A circular loop operator in a conformal field theory in R
4 preserves an SU(1, 1)×SU(2)

group of symmetries. Explicit computations with a circular ’t Hooft operator T (LR) are

conveniently performed by conformally mapping the theory from R
4 to AdS2 × S2, where

AdS2 is modeled by the Poincaré disk. The symmetries preserved by the circular ’t Hooft

operator are made manifest in AdS2 × S2, as they act by isometries. In AdS2 × S2, the

loop operator is supported at the conformal boundary of AdS2 × S2, identified with the

circular boundary of the Poincaré disk.

– 8 –
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The insertion of an ’t Hooft operator T (LR) at the conformal boundary of AdS2 × S2

creates the following classical field configuration [7]

F 0 =
B

2
vol(S2) + ig2θ

B

16π2
vol(AdS2), φ0

1 =
B

2

g2

4π
|τ | . (3.1)

The coefficient B ≡ BiHi ∈ t takes values in the Cartan subalgebra of the Lie algebra

g associated with the gauge group G. Via (2.8) B can be identified [6] with the highest

weight Lw of a representation LR of the dual group LG, justifying the labeling of ’t Hooft

operators in terms of representations of the dual group [7]. The insertion of an ’t Hooft

operator creates quantized magnetic field, and when θ 6= 0 it also generates an electric field,

as the monopole that is being inserted acquires electric charge via the Witten effect [17].

Without loss of generality, we have chosen the single scalar field that is excited by the

circular ’t Hooft operator to be φ1.

In order to compute the correlation function of T (LR) with a chiral primary operator

O∆(Z) a quantum definition of the ’t Hooft operator is required. This quantum definition

was proposed in [8], where it was used to explicitly compute the expectation value of T (LR)

to next to leading order in perturbation theory and to exhibit the conjectured action of

S-duality on circular ’t Hooft and Wilson operators in N = 4 super Yang-Mills.6

The basic proposal in [8] is to define the gauge invariant ’t Hooft operator by a path

integral quantized in the background field gauge expanded around the background (3.1)

A = A0 + Â ,

φI = φ0
I + φ̂I .

In this path integral one must integrate over all quantum fields (gauge fields, scalars,

fermions and ghosts) with the boundary conditions specified by (3.1).7 The classical field

configuration (3.1) created by the ’t Hooft operator T (LR) breaks the G-invariance of

the theory to invariance under an stability group H ⊂ G. The choice of B ∈ t, which

characterizes the background, determines the unbroken gauge group H. This is generated

by those x ∈ g for which

[x,B] = 0 . (3.2)

In order to have a path integral definition of the ’t Hooft operator T (LR) which is gauge

invariant, we must integrate over the G-orbit of B ∈ t along the loop. This integration,

which we include in our definition of the path integral measure, restores G-invariance. The

integral we must perform is over the adjoint orbit of B

O(B) = {gBg
−1, g ∈ G} , (3.3)

6The paper [18] considered semiclassical quantization of ’t Hooft line operators in a holomorphic-

topological twisted version of N = 4 super Yang-Mills and obtained the associated Hilbert spaces by

calculating the zero-modes around the background field configuration.
7The definition of the ’t Hooft operator in terms of an N = 4 super Yang-Mills partition function on

AdS2 × S2 is reminiscent of Sen’s definition of the quantum entropy function [19–23] in terms of the string

theory path integral on AdS2, which encodes the macroscopic degeneracy of states of extremal black holes. It

would be interesting to understand whether a direct physical relation between the two path integrals exists.
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We refer the reader to [8] for more details on the path integral definition of an ’t Hooft op-

erator.

Using the path integral prescription in [8], we now proceed to compute the correlator

of an ’t Hooft operator T (LR) with an arbitrary chiral primary operator O∆(Z) in N = 4

super Yang-Mills with gauge group G. When the theory is defined on AdS2×S2, conformal

invariance implies that the correlator is given by

〈T (LR) · O∆〉G,τ

〈T (LR)〉G,τ
= Ξ∆ , (3.4)

where Ξ∆ is a function that depends on the representation LR of the ’t Hooft operator, the

complexified coupling constant τ and the choice of gauge group G.

We evaluate this correlator by expanding the path integral representation of the cor-

relator (3.4) around the classical field configuration (3.1) created by the ’t Hooft operator

T (LR). To next to leading order in perturbation theory it suffices to expand the gauge fixed

N = 4 super Yang-Mills action and the operator insertion O∆(Z) to quadratic order in

the fluctuations. We then proceed to integrate over the quantum fluctuations at one loop.

The chiral primary operator O∆ = g−∆P∆(Z) can be expanded around the back-

ground (3.1) by decomposing the complex scalar field Z in a basis of Lie algebra gener-

ators through Z = ZaTa, where a = 1, . . . dim(G). To quadratic order in the fluctua-

tions we have8

O∆ =

(
g|τ |
8π

)∆
[
P∆(B) +

8π

g2|τ | Ẑ
a∂aP∆(B) +

1

2

(
8π

g2|τ |

)2

ẐaẐb∂a∂bP∆(B)

]
, (3.5)

where we have used that P∆(Z) given in (2.7) is a polynomial of degree ∆. We note that

the scalar field Z = φ1+iφ2 involves a scalar field φ1 that is excited in the ’t Hooft operator

background (3.1) and another one φ2 that is not.

The correlator to next to leading order in perturbation theory is then given by

〈T (LR)O∆〉G,τ

〈T (LR)〉G,τ
=

(
g|τ |
8π

)∆
[
P∆(B) +

1

2

(
8π

g2|τ |

)2

∂a∂bP∆(B)〈φ̂a
1φ̂

b
1 − φ̂a

2φ̂
b
2〉
]
, (3.6)

where 〈φ̂a
1φ̂

b
1− φ̂a

2φ̂
b
2〉 is the difference between the scalar propagator for φ̂1 and φ̂2 in the ’t

Hooft operator background (3.1). In arriving at (3.6) we have used that 〈Ẑa〉 = 0 as well as

〈φ̂1φ̂2〉=0, which follows from SO(5) invariance of the ’t Hooft operator background (3.1).

The first term in (3.6) is the leading semiclassical approximation, where the chiral

primary operator is evaluated on the classical field configuration (3.1). The second term is

the one loop correction. At one loop we must sum over all possible contractions between two

fields in the operator P∆(Z), while the remaining ∆−2 scalar fields in the operator are to be

evaluated on the classical background (3.1). The second term in (3.6) sums over all possible

contractions between two scalar fields, which are connected by the scalar field propagator

on the ’t Hooft operator background. What we need is the difference of propagators

〈φ̂a
1φ̂

b
1 − φ̂a

2φ̂
b
2〉 = 〈φ̂a

1φ̂
b
1 − φ̂a

2φ̂
b
2〉0 + 〈φ̂a

1φ̂
b
1 − φ̂a

2φ̂
b
2〉0/. (3.7)

8This correlator with an ’t Hooft operator replaced by a surface operator [15] (see also [24]) was evaluated

in the leading semiclassical approximation in [25].

– 10 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
2

where all the fields are evaluated at the same spacetime point. On the right hand side we

have separated the contributions of zero modes from those of non-zero modes.

We now argue that the second term in the right hand side of (3.7) vanishes, i.e., the

non-zero modes cancel out in the difference of propagators. When we introduce an IR

cut-off to discretize the spectrum, the second term takes the form

〈φ̂a
1φ̂

b
1 − φ̂a

2φ̂
b
2〉0/ =

∑

n

1

λn
fa
1n(x)f b

1n(x)−
∑

m

1

ωm
fa
2m(x)f b

2m(x). (3.8)

Here fa
2m(x) is the normalized eigenfunction of the scalar Laplacian in the background (3.1)

with eigenvalue ωm. This is the linearized operator for fluctuations of the scalar field φ̂a
2.

For φ̂a
1, note that the quadratic terms in the gauge-fixed action mix φ̂a

1 with gauge the field

fluctuations (see [8] for the precise form of the gauge fixed action). Thus fa
1n is a component

of the vector-valued eigenfunction for the relevant differential operator with eigenvalue λn.

The eigenfunctions fa
1n and fa

2m are non-constant, since they are non-zero modes. On the

other hand, the symmetries of AdS2 × S2 dictate that the total expression (3.8), which is

finite, has to be constant in the limit that the IR cut-off is removed. This implies that the

non-zero modes of φ̂a
1 and φ̂a

2 have to cancel out in (3.8) in the limit that the regulator is

removed, and therefore we can drop the second term in the right hand side of (3.7) and

focus on the zero-mode contribution.

We now proceed to show that zero modes, which are constant, give a non-trivial con-

tribution to the correlation functions. As we have already mentioned, the background (3.1)

created by the insertion of an ’t Hooft operator T (LR) breaks the gauge group G down to a

subgroup H. It was argued in [8] that in order to make the ’t Hooft operator T (LR) gauge

invariant one must integrate over the G-adjoint orbit of B (3.3), obtained by the action

of G on the classical background (3.1). Conjugating the scalar classical background (3.1)

generates quantum fluctuations which are associated with zero modes of the quadratic

operator for φ̂1. The fluctuations generated by a G-transformation are given by

φ̂1 = δB
g2

8π
|τ | ≡ i[ξ,B]

g2

8π
|τ | ξ ∈ g . (3.9)

We can identify the non-vanishing fluctuations by writing the Lie algebra g in the Cartan

basis {Hi, Eα}, where the generators Hi span the Cartan subalgebra t ⊂ g and Eα are

ladder operators associated to roots α of the Lie algebra g. In this basis ξ takes the

form ξ = ξiHi + ξαEα. Since B = BiHi is in the Cartan subalgebra we have that the

non-vanishing scalar field fluctuations are

φ̂1 =
∑

α(B)6=0

α(B)ξαEα
g2

8π
|τ | , (3.10)

where we have used the commutation relation [λ,Eα] = α(λ)Eα, valid for any λ ∈ t. The

sum in (3.10) is over all the roots α that do not annihilate B, as those which do annihilate B

do not contribute. This implies that these fluctuations (3.10) are labeled by the coset space

G/H, where H ⊂ G is the subgroup that preserves the field configuration (3.1) created by

the ’t Hooft operator T (LR). This follows from the definition of H given in (3.2), which
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is generated in the Cartan basis by {Eα|α(B) 6= 0}. Therefore, the coset space G/H

parametrizes the space of zero mode fluctuations of the scalar field φ̂1.

The path integral representation of the correlation function (3.4) is gauge invariant

once we integrate over the zero mode fluctuations of the scalar field φ̂1 obtained from the

classical background (3.1) by the action of G. The integration measure for these modes

follows from the quadratic form defined by the N = 4 super Yang-Mills on-shell action

evaluated on the ’t Hooft operator background (3.1). We recall that the renormalized,

on-shell action is given by [8]

S =
tr(B2)

8
g2|τ |2 , (3.11)

and defines the quadratic form from which the propagator can be computed. We first note

that fluctuations of B along root directions can be expanded as δB =
∑

α>0(δB
αEα +

δB−αE−α). Using the on-shell action (3.11) we get that

〈δBαδB−α〉 = 2|α|2
g2|τ |2 (3.12)

where we have used that trEαE−α = 2/|α|2, and where |α|2 = 〈α,α〉 is the length of the

root α computed using the restriction of the metric on g to the Cartan subalgebra t. The

propagator for the scalar field fluctuations is given by

〈φ̂α
1 φ̂−α

1 〉0 = 〈δBαδB−α〉
(
g2|τ |
8π

)2

.

Therefore, using (3.12) we arrive at

〈φ̂α
1 φ̂−α

1 〉0 =
g2

32π2
|α|2 . (3.13)

Since only the zero-modes of φ̂1 contribute, (3.6) simplifies to

〈T (LR) · O∆(Z)〉G,τ

〈T (LR)〉G,τ
=

(
g|τ |
8π

)∆


P∆(B) +

(
8π

g2|τ |

)2∑

α>0
α(B)6=0

∂α∂−αP∆(B)〈φ̂α
1 φ̂

−α
1 〉0


 ,

and using (3.13) we obtain

〈T (LR) · O∆〉G,τ

〈T (LR)〉G,τ
=

(
g|τ |
8π

)∆


P∆(B) +

2

g2|τ |2
∑

α>0
α(B)6=0

|α|2∂α∂−αP∆(B)


 . (3.14)

By using the relation9

α̂ · ∂P∆(λ) ≡ α̂i∂iP∆(λ) = α(λ)∂α∂−αP∆(λ), ∀λ ∈ tC, (3.15)

9This can be shown by expanding the equation P (gZg
−1) = P (Z) with g = exp

`
iξiHi + iξαEα

´
for

small ξ.
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where α̂ = [Eα, E−α] = 2α/|α|2 is the coroot corresponding to α, we can further rewrite

the correlator as

〈T (LR) · O∆〉G,τ

〈T (LR)〉G,τ
=

(
g|τ |
8π

)∆


P∆(B) +

2

g2|τ |2
∑

α>0
α(B)6=0

〈α,α〉
α(B)

α̂ · ∂P∆(B)


 . (3.16)

This is the final result to next to leading order in perturbation theory for the correlator of

an ’t Hooft operator T (LR) and an arbitrary chiral primary operator O∆ in N = 4 super

Yang-Mills with gauge group G.

As illustration of the general result (3.16), let us consider the case with gauge group

G = U(n), for chiral primary operator P∆ = trZ∆ and for ’t Hooft operator labeled by

the highest weight B = diag(mi) with m1 > m2 . . . > mn. In this case, the correlation

function is given by

〈T ([m1,m2, . . . ,mn]) · O∆〉G,τ

〈T ([m1,m2, . . . ,mn])〉G,τ
=

(
g|τ |
8π

)∆


∑

i

m∆
i +

4∆

g2|τ |2
∑

i<j

m∆−1
i −m∆−1

j

mi −mj


 .

Using the formula (2.11), that follows from a supersymmetric Ward identity [13], we

can obtain the scaling weight of an arbitrary ’t Hooft operator T (LR) from the correlator

of the ’t Hooft operator with the ∆ = 2 chiral primary operator. The one loop expression

for the scaling weight of an ’t Hooft operator in N = 4 super Yang-Mills for an arbitrary

gauge group G is given by

hT (LR, τ) = −g
2|τ |2
48π2

[
tr(B2) +

8

g2|τ |2 dim(G/H)

]
. (3.17)

The second term is the first quantum correction to the classical computation consid-

ered in [7].10

4 Wilson loop correlators at strong coupling

In this section we perform the strong coupling expansion of the correlator of the circular

Wilson loop operator [26, 27]

W (R) ≡ TrRPexp

∮
(iA+ φ1) ,

and an arbitrary chiral primary operator O∆:

〈W (R) · O∆〉G,τ . (4.1)

It was first noticed in [28] that, in Feynman gauge, the combined propagator for the

gauge field and the scalar between two points on the circle is position-independent (also

10In the formula for the scaling weight of the BPS ’t Hooft operator in [7], the sign for the gauge field

contribution should be changed. With this modification taken into account, our leading result in (3.17) is

consistent with [7].
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independent of the radius a of the circle), and that Feynman diagrams with internal vertices

cancel to leading order in perturbation theory. This led to the remarkable conjecture that

the expectation value of a circular Wilson loop operator in N = 4 super Yang-Mills is

captured by a matrix integral [28, 29], which has now been proven in [30] using localization.

In [31], it was shown to leading order in perturbation theory that Feynman diagrams

with internal vertices contributing to the correlator (4.1) vanish, also leading to the conjec-

ture11 that loop corrections arising from internal vertices cancel to all orders in perturbation

theory.12 This conjecture implies that all quantum corrections to the correlator (4.1) are

due to ladder diagrams, reducing the sum over all Feynman diagrams to a combinato-

rial problem [31]. This combinatorics is exactly captured by a complex Gaussian matrix

model defined by a partition function where the complex matrix z is an element of the

complexified Lie algebra gC [32]. The same matrix model also computes [32] the two, and

three-point functions of local chiral primary operators in N = 4 super Yang-Mills of the

form O∆ = g−∆P∆(Z) as in (2.6), where P∆ is a G-invariant polynomial (2.7). Therefore,

the correlator of the circular Wilson loop W (R) with the chiral primary operator O∆ is

conjecturally given by13

〈W (R) · O∆〉G,τ =
1

(2πg)∆

∫

gC

[dz]e
− 2

g2 tr(zz)
TrR e

z+z
2 P∆(z)

∫

gC

[dz]e
− 2

g2 tr(zz)
, (4.2)

where [dz] is the measure on the complexified Lie algebra gC. We use this matrix model

representation to compute the correlator (4.1) in the strong coupling expansion.

It is possible to rewrite this complex matrix model as a normal matrix model, where the

integration is performed over the elements z in the complexified Lie algebra that commute

with its conjugate variable: [z, z] = 0. The normal matrix integral can be further restricted

to the complexified Cartan subalgebra tC. This is shown in appendix C for an arbitrary

gauge group G, thereby generalizing the derivation in appendix A of [32], where the case

G = U(n) was studied. The precise relation between the complex matrix model and the

normal matrix model is given by

∫
gC

[dz]e
− 2

g2 tr(zz)
TrR e

z+z
2 P∆(z)

∫
gC

[dz]e
− 2

g2 tr(zz)
TrR e

z+z
2

=

(
g2

4

)∆
∑

v n(v)e
g2

8
〈v,v〉 ∫

tC
[dz]

∣∣∣∆
(
v + 2

gz
)∣∣∣

2
e−〈z,z〉P∆

(
v + 2

gz
)

∑
v n(v)e

g2

8
〈v,v〉 ∫

tC
[dz]

∣∣∣∆
(
v + 2

gz
)∣∣∣

2
e−〈z,z〉

, (4.3)

11The large N conjecture for the correlators of half BPS Wilson and local operators has been tested

extensively using AdS/CFT [13, 31–33]. Given that the finite N version of the conjecture for the expectation

value has been proven, it seems likely that the conjecture for the correlator also holds for finite rank, and

that it can be proven using localization. Progress in this direction has been made recently in [35–37].
12See [34] for an extension to the correlators of 1/4 BPS Wilson loops and half BPS local operators.
13This is the form of the correlator when the theory is defined on AdS2 × S2. In R

4 we should further

divide by er∆ as in (2.3).
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where

∆(z) =
∏

α>0

α(z)

generalizes the Vandermonde determinant that appears in the G = U(n) case, and 〈 , 〉 is

the restriction of the metric tr(· ·) to the Cartan subalgebra t. In order to derive (4.3) we

have expressed the insertion of the character TrR e
z+z
2 in the representation R as a sum over

the weights v in the representation R of the gauge group G, and n(v) is the multiplicity of

the weight v in the representation R.

In the strong coupling limit, the terms with weights v in the Weyl-orbit of the highest

weight w in the representation R dominate, as 〈v, v〉 is maximal for these. The leading

term at strong couping is simply given by P (w). To study corrections, it is convenient to

split ∆(z) as

∆(z) = ∆G/H(z)∆H(z),

where

∆G/H(z) ≡
∏

α>0
〈α,w〉6=0

α(z), ∆H(z) ≡
∏

β>0

〈β,w〉=0

β(z).

The correction to next to leading order in the strong coupling expansion, where g ≫ 1,

comes from the contraction of zi∂iP∆ ≡ z · ∂P∆ with z · ∂∆G/H .14

This computation yields

〈W (R) · O∆〉G,τ

〈W (R)〉G,τ
=
( g

8π

)∆
[
P∆(w) +

2

g2

∑

α>0
〈α,w〉6=0

〈α,α〉
〈α,w〉 α̂ · ∂P∆(w)

]
. (4.4)

This is the final result to next to leading order in the strong coupling expansion of the

correlator of the circular Wilson loop W (R) with an arbitrary chiral primary O∆ in N = 4

super Yang-Mills with gauge group G.

By using the formula (2.11), we find that the scaling weight of a circular Wilson loop

W (R) at strong coupling is given by

hW (R, τ) = − g2

48π2

[
〈w,w〉 + 8

g2
dim(G/H)

]
, (4.5)

where w is the highest weight in the representation R.

5 S-duality of correlators

In this section we demonstrate that the computations we have performed for ’t Hooft

and Wilson loop correlators in the previous sections exactly map to each other under the

14The contraction of z · ∂P with β · z in ∆H(z) gives a vanishing contribution due to (3.15). There are

other contractions at the same order, but they cancel between the numerator and the denominator.
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conjectured action of S-duality. These results exhibit S-duality in N = 4 super Yang-

Mills with arbitrary gauge group G on correlation functions, and extends the recent results

in [8], which demonstrated that the expectation value of a circular ’t Hooft operator and

a circular Wilson operator are exchanged under electric-magnetic duality.

In section 3, the correlator of a circular ’t Hooft loop operator T (LR) and a chiral

primary operator O∆ = g−∆P∆(Z) was calculated to next to leading order in the weak

coupling expansion, yielding the result (3.16), which we reproduce here:

〈T (LR) · O∆〉G,τ

〈T (LR)〉G,τ
=

(
g|τ |
8π

)∆


P∆(B) +

2

g2|τ |2
∑

α>0
α(B)6=0

〈α,α〉
α(B)

α̂ · ∂P∆(B)


 . (5.1)

In order to demonstrate S-duality, we need the result of the correlator for the dual oper-

ators in the theory with gauge group LG and coupling constant Lτ . Using the computation

in (4.4), we find that the strong coupling expansion of the correlator of a circular Wilson

loop operator W (LR) and the chiral primary operator LO∆ ≡ (Lg)−∆ · LP∆(LZ) is given by

〈W (LR) · LO∆〉LG,Lτ

〈W (LR)〉LG,Lτ

=

(
Lg

8π

)∆




LP∆(Lw) +
2

(Lg)2

∑

Lα>0
〈Lα,Lw〉6=0

〈Lα, Lα〉
〈Lα, Lw〉

Lα̂ · ∂LP∆(Lw)


 . (5.2)

We recall that under S-duality

Lτ = − 1

ngτ
, =⇒ (Lg)2 = ngg

2|τ |2 , (5.3)

and the gauge groups G and LG are exchanged. Also, as discussed in section 2, S-duality

induces the following transformations

LP∆(Lw) = n
−∆/2
g P∆(B),

Lw = n
−1/2
g R(B), (5.4)

Lα = n
−1/2
g R(α̂) ,

where α̂ ≡ 2α/|α|2 is the coroot corresponding to α and R is the linear transformation

defined in (2.8). The two expressions in (5.1) and (5.2) map into each other under the

transformations (5.3) and (5.4).

In [8], the prediction of S-duality for the expectation values of loop operators

〈T (LR)〉G,τ = 〈W (LR)〉LG,Lτ , (5.5)

was demonstrated to next to leading order in the coupling constant expansion. By com-

bining this with the above agreement, we conclude that the ’t Hooft and Wilson loop

correlation functions transform as predicted by S-duality

〈T (LR) · O∆〉G,τ = 〈W (LR) · LO∆〉LG,Lτ . (5.6)
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We have explicitly exhibited this to next to leading order in the coupling constant ex-

pansion. Furthermore, this implies that the semiclassical scaling weight of the ’t Hooft

operator (3.17) exactly reproduces the scaling weight of the dual Wilson operator evalu-

ated at strong coupling (4.5) under the action of S-duality:

hT (LR, τ) = hW (LR, Lτ). (5.7)

These are the main results of this paper.

Finally let us discuss the OPE coefficients. In appendix D we show that the two and

three-point functions of chiral primary operators are invariant under S-duality. Since the

OPE coefficients and the correlators of a loop operator with a chiral primary operator

are related by the matrix of two-point functions of the local operators, our results im-

ply that the OPE coefficients (1.2) also match up to the next-to-leading order under the

S-duality transformation:

b∆(LR, τ) = Lc∆(LR, Lτ). (5.8)

We have thus found the precise matching under S-duality of a number of physical

observables involving circular ’t Hooft and Wilson loop operators. This provides a quanti-

tative demonstration of the action of electric-magnetic duality on correlation functions in

N = 4 super Yang-Mills with an arbitrary gauge group G.
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A Weyl transformation between metrics

In this appendix we discuss the Weyl transformation relating R
4 and AdS2 × S2.

Let us parametrize R
4 using two sets of polar coordinates so that

ds2
R4 = dr2 + r2dψ2 + dx2 + x2dφ2. (A.1)

These coordinates are relevant for a circular loop, which we take to be located at r = a

and x = 0. By making the following change of coordinates

r̃2 =
(r2 + x2 − a2)2 + 4a2x2

4a2
=

a2

(cosh ρ− cos θ)2
,

r = r̃ sinh ρ , x = r̃ sin θ ,

(A.2)

we find the metric

ds2
R4 = r̃2

(
dρ2 + sinh2 ρ dψ2 + dθ2 + sin2 θ dφ2

)
, (A.3)
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which is conformal to AdS2 × S2 in global coordinates. Note that the loop, which was

located at r = a, x = 0 in R
4, gets mapped to the conformal boundary of AdS2 × S2,

namely the boundary of the Poincaré disk.

In the absence of conformal anomaly, a dimension ∆ scalar operator O∆ transforms

as O∆ → r̃−JO∆ under the Weyl transformation (A.3). This proves the position depen-

dence (2.3) of the correlator on R
4. The same Weyl transformation can be used to write

down the form of the correlator of the loop operator with the stress-energy tensor on R
4

from the AdS2 × S2 correlator (2.4).

B Chiral primary operators and S-duality

Chiral primary operators and their S-duality transformation in N = 4 super Yang-Mills

with gauge group G play a central role in the current work. In this appendix we supplement

the minimal amount of information given in section 2 with more details and examples.

Let us consider the subspace of the Coulomb branch where only the combination of

scalar fields Z = φ1 + iφ2 is excited. The gauge group G is generically broken to U(1)r, and

Z takes expectation values in the Cartan subalgebra tC, and are identified by the action of

the Weyl group.

The massless fields ϕi relevant to us are the components of Z in the Cartan subalgebra

directions. Let us canonically normalize them by expanding Z as Z = gϕiHi so that the

kinetic term in the Lagrangian reads

L = |∂µϕ
i|2 + · · · . (B.1)

Since the low-energy physics is that of an abelian theory with gauge group U(1)r, S-duality

acts as ordinary electric-magnetic duality. To see how this works let us consider the dual

theory with dual gauge group LG. If we expand the dual scalar as LZ = Lg Lϕi LHi, the

kinetic term is

LL = |∂µ
Lϕi|2 + · · · . (B.2)

We identify Lϕ with ϕ via

Lϕ = Rϕ (B.3)

using the linear transformation introduced below (2.8). The map R is norm-preserving as

necessary for the invariance of the kinetic term, and the choice of R is unique up to the

Weyl group action.

The gauge invariant coordinates of the moduli space for the original gauge theory are

provided by the r generators Pi of the invariant polynomial ring (2.5). They should be

identified with the gauge invariant coordinates in the dual theory according to

LPi(
Lϕ) = Pi(ϕ). (B.4)

In terms of the scalar Z whose normalization is such that it has a kinetic term

g−2tr(∂µZ∂
µZ), and its counterpart for LZ in the dual theory, the S-duality map of the
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chiral primaries is given by

1

(Lg)νi

LPi(
LZ)←→ 1

gνi
Pi(Z). (B.5)

This explains the coupling dependence in (2.9).

In the following we illustrate our considerations by explicitly writing down chiral pri-

mary operators for several choices of gauge group. Note that G-invariant polynomials on

gC and Weyl-invariant polynomials on tC are in one-to-one correspondence. For exceptional

groups it is more convenient to use the latter description, and this is what we do below.

• G = SU(n).

In this case the generators of the chiral ring are simply single trace operators

Pi(Z) = trZi+1, i = 1, 2, . . . , n− 1 (B.6)

with νi = i+ 1.

• G = SO(2n+ 1) and G = Sp(n).

For these groups, the trace of an odd power of the matrix Z vanishes. Thus the

generators are given by the trace of the even powers of Z:

Pi(Z) = trZ2i, i = 1, 2, . . . , n. (B.7)

Their conformal dimensions are given by νi = 2i. The Lie algebras of the two gauge

groups are exchanged under S-duality.

• G = SO(2n).

For the even orthogonal group, in addition to the trace of an even power of Z’s one

can consider the Pfaffian. The generators are

Pi(Z) = trZ2i, i = 1, 2, . . . , n− 1, (B.8)

Pn(Z) = Pf(Z) ≡ 1

2nn!
ǫi1i2...i2n−1i2nZi1i2 . . . Zi2n−1i2n . (B.9)

These have conformal dimensions νi = 2i for i = 1, . . . , n− 1, and νn = n.

• G = G2.

Here we choose to be less explicit and describe chiral primary operators in terms of

Weyl invariant polynomials on t. The Cartan subalgebra t is two-dimensional and

can be identified with the plane x1 +x2 +x3 = 0 in R
3. The Weyl group is generated

by the permutations of the xi’s and the overall sign change. Thus as generators of

the Weyl-invariant polynomials on t, we can take [10]

P1 = x2
1 + x2

2 + x2
3, P2 = x2

1x
2
2x

2
3 (B.10)

with ν1 = 2, ν2 = 6. According to (2.10), under S-duality they transform to

LP1 = P1,
LP2 = −P2 +

1

54
P 3

1 (B.11)

since R acts as (x1, x2, x3) 7→ 3−1/2(x2 − x3, x1 − x2, x3 − x1) [10].
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C Complex and normal matrix models for any G

The aim of this appendix is to derive the relation between the complex and normal matrix

models for general G, as used in (4.3). This is done by generalizing the derivation of the

relation in the U(n) case given in [32].

First we decompose the complex variable z into the real and imaginary parts:

z = x+ iy ∈ gC, x, y ∈ g. (C.1)

Then the complex matrix model integral is defined by

IP =

∫
[dx][dy]e

− 2

g2 (tr x2+tr y2)
TrRe

xP (x+ iy), (C.2)

where P is an arbitrary invariant polynomial on gC. Let us introduce an orthonormal basis

Ta of g satisfying

tr(TaTb) = δab (C.3)

and write

x = xaTa, y = yaTa. (C.4)

The measure is then

[dx][dy] =
∏

a

dxadya. (C.5)

By writing

P (x+ iy) = eiy
a ∂

∂xaP (x), (C.6)

we can integrate out y so that the integral is now

IP =

(
πg2

2

)dim G/2 ∫
[dx]e

− 2

g2 tr x2

TrRe
xe−

g2

8
∇2

gP (x). (C.7)

Here ∇2
g is the Laplacian on g. To further reduce the integral, let us represent g as a

fibration of G/T over t (the fibration degenerates on a set of measure zero):

x = g
−1λg, g ∈ G , (C.8)

where T is the maximal torus of G. Here λ ∈ t, and g parametrizes the fiber, which is the

adjoint orbit of λ. If we expand g
−1dg as

g
−1dg = i(dξiHi + dξαHα) (C.9)

in the Cartan basis, the metric is then

ds2g = ds2t + 2
∑

α>0

α(λ)2tr(EαE−α)dξαdξ−α. (C.10)
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Let us normalize Hi so that 〈Hi,Hj〉 = δij . We can write the Laplacian on g as

∇2
g =

1

∆(λ)2
∂

∂λi
∆(λ)2

∂

∂λi
+ (derivatives in G/T -directions), (C.11)

where

∆(λ) =
∏

α>0

α(λ). (C.12)

Note that ∆(λ) is skew-symmetric with respect to the Weyl group. In fact any skew-

symmetric polynomial has to be divisible by ∆(λ) because such a polynomial vanishes

along the hyperplane α(λ) = 0 fixed by the Weyl reflection associated with α. Since the

metric on t is Weyl invariant, the polynomial

∑ ∂

∂λi

∂

∂λi
∆(λ) = ∇2

t∆(λ) (C.13)

is also skew-symmetric. The polynomial however has a lower degree than ∆, so it has to

vanish, i.e., ∆ is harmonic on t [38]. Using the fact that ∆ is harmonic, we can write

∇2
g =

1

∆(λ)
∇2

t∆(λ) + (derivatives in G/T -directions). (C.14)

Also note that the quotient metric on G/T is given by

ds2G/T = 2
∑

α>0

tr(EαE−α)dξαdξ−α. (C.15)

Hence the volume form on the orbit of λ is given by

∆(λ)2vol(G/T ), (C.16)

where vol(G/T ) is the volume form on G/T constructed from the metric (C.15). Thus

IP =

(
πg2

2

)dimG/2
Vol(G/T )

|W|

∫

t

[dλ]∆(λ)2e
− 2

g2 〈λ,λ〉
TrRe

λ∆(λ)−1e−
g2

8
∇2

t ∆(λ)P (λ),

where |W| is the order of the Weyl group W, and [dλ] =
∏

i dλ
i. In order to keep the

equations simple, from now on we will neglect those prefactors which cancel in (4.3). Let

us define η =
√

2
g λ. Then

IP ∝
∫

t

[dη]∆(η)e−〈η,η〉TrRe
g√
2
η
e−

1
4
∇2

t ∆(η)P

(
g√
2
η

)
. (C.17)

Using the identity

e−
1
4
∂2

ηf(η) = e
1
2
η2

f

(
η − ∂η

2

)
e−

1
2
η2

(C.18)
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that holds for any function f(η), we get

IP ∝
∫

t

[dη]∆(η)e−
1

2
〈η,η〉TrRe

g√
2
η

× P
(
g√
2

(
ηi

2
− 1

2

∂

∂ηi

))
∆

(
ηi

2
− 1

2

∂

∂ηi

)
e−

1

2
〈η,η〉. (C.19)

Using (C.18) and harmonicity, we can write

∆

(
ηi

2
− 1

2

∂

∂ηi

)
e−

1
2
〈η,η〉 = ∆(η)e−

1
2
〈η,η〉 := Ψ(η). (C.20)

Then the integral is now

IP ∝
∫

t

[dη]Ψ(η)TrRe
g√
2
η
P

(
g√
2

(
ηi

2
− 1

2

∂

∂ηi

))
Ψ(η). (C.21)

The differential operator can be interpreted as creation operators in an oscillator system

[ai, a
†
j ] = δij . (C.22)

Thus Ψ(η) is the wave function for the state |Ψ〉 ∝ ∆(a†)|0〉. The integral now

takes the form

IP ∝ 〈Ψ|TrRe
g
2
(a+a†)P

(g
2
a†
)
|Ψ〉

=
∑

v

n(v)〈Ψ|e− g2

8
〈v,v〉e

g
2
v(a)e

g
2
v(a†)P

(g
2
a†
)
|Ψ〉, (C.23)

where in the second line we wrote the character as a sum over weights v with multiplicity

n(v). By using the completeness of coherent states

1 ∝
∫ ∏

i

d2zi|z〉〈z|, ai|z〉 = zi|z〉, (C.24)

we can write the integral as

IP ∝
∑

v

n(v)e−
g2〈v,v〉

8

∫

tC

[dz]∆(z)∆(z)e−〈z,z〉e
g
2
v(z+z)P

(g
2
z
)
. (C.25)

Since we are interested in the strong coupling limit, we further transform the normal

matrix model into a form where the strong coupling expansion is easy to perform by shifting

z → z + 1
2gv in (C.25):

IP ∝
∑

v

n(v)e
g2

8
〈v,v〉

∫

tC

[dz]

∣∣∣∣∆
(
v +

2

g
z

)∣∣∣∣
2

e−〈z,z〉P

(
g2

4
v +

g

2
z

)
. (C.26)

Here we have identified t with t∗ using the metric. By taking the ratio IP/I1, we obtain

the relation (4.3).
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D S-duality of 2- and 3-point functions of CPO’s

In this appendix we show that the two and three-point functions of chiral primary operators

O(i)
∆ (see eq. (2.6)) transform according to the S-duality conjecture

〈O(1)
∆ · O

(2)
∆ 〉G,τ = 〈LO(1)

∆ · LO
(2)

∆ 〉LG,Lτ , (D.1)

〈O(1)
∆1
· O(2)

∆2
· O(3)

∆1+∆2
〉G,τ = 〈LO(1)

∆1
· LO(2)

∆2
· LO(3)

∆1+∆2
〉LG,Lτ . (D.2)

These correlation functions, which are independent of the coupling constant, can be com-

puted using a complex Gaussian matrix model where the matrix z takes values in the

complexified Lie algebra gC [32].

The spatial dependence of the correlator is fixed by conformal invariance and the two

and three-point correlators are given respectively by the matrix integrals
∫

gC

[dz]e−tr(zz)P (1)(z)P (2)(z)

∫

gC

[dz]e−tr(zz)
(D.3)

and
∫

gC

[dz]e−tr(zz)P (1)(z)P (2)(z)P (3)(z)

∫

gC

[dz]e−tr(zz)
. (D.4)

Any complex matrix z ∈ gC can be decomposed as

z = gbg−1 b ∈ b, g ∈ G , (D.5)

where b belongs to the Borel subalgebra b = tC ⊕ (⊕α>0gα) of gC, and gα is generated by

the raising operator Eα in the Weyl basis. The Borel subalgebra generalizes the subgroup

of upper triangular matrices in u(n)C to an arbitrary Lie algebra gC.

We recall that the an invariant polynomial P (z) can be written in terms of a rank-∆

invariant symmetric tensor on the Lie algebra as

P (z) = Ka1...a∆
za1 . . . za∆ = K(

∆︷ ︸︸ ︷
z, . . . , z) . (D.6)

We claim that when P is evaluated on an element of the Borel subalgebra b ∈ b, P is just

a function of the field components λ in the Cartan subalgebra tC. This follows from the

fact that Ka1...a∆
is an invariant tensor on g, which implies that

∆∑

l=1

K(z1, . . . , zl−1, [z, zl], zl+1, . . . , z∆) = 0 . (D.7)

If we let z1 = Eα1
, . . . , zs = Eαs , zs+1 = · · · = z∆ = λ, z = λ′, where λ, λ′ ∈ tC and Eα are

ladder operators in the Cartan basis, then invariance of K implies

[(α1 + · · · + αs)(λ
′)]K(Eα1

, . . . , Eαs , λ, . . . , λ) = 0 . (D.8)
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In the Borel subalgebra b all roots are positive, and therefore (α1 + · · · + αs) 6= 0. This

implies that

K(Eα1
, . . . , Eαs , λ, . . . , λ) = 0, for s = 1, . . . ,∆ . (D.9)

This demonstrates that any invariant polynomial evaluated on the Borel subalgebra b

depends only on the field components in the Cartan subalgebra tC:

P (b) = P (λ), b ∈ b, λ ∈ tC, b− λ ∈ ⊕
α>0

gα. (D.10)

By using the decomposition in (D.5) we can compute the Jacobian of the change of

variables (see appendix A.33 in [39]) and write the integrals in (D.3) and (D.4) completely

in terms of integration over the Cartan subalgebra tC

∫
gC

[dz]e−tr(zz)P (1)(z)P (2)(z)
∫
gC

[dz]e−tr(zz)
=

∫

tC

[dz]|∆(z)|2e−〈z,z〉P (1)(z)P (2)(z)

∫
tC

[dz]|∆(z)|2e−〈z,z〉 , (D.11)

∫
gC

[dz]e−tr(zz)P (1)(z)P (2)(z)P (3)(z)
∫
gC

[dz]e−tr(zz)
=

∫

tC

[dz]|∆(z)|2e−〈z,z〉P (1)(z)P (2)(z)P (3)(z)

∫

tC

[dz]|∆(z)|2e−〈z,z〉
, (D.12)

where

∆(z) ≡
∏

α>0

α(z) . (D.13)

We now need to show that these expressions transform properly under the S-duality

map (2.10). Indeed, if we define

Lz = Rz (D.14)

for z ∈ tC, then

[dLz] = [dz], 〈Lz, Lz〉 = 〈z, z〉, L∆(Lz) ≡
∏

Lα>0

Lα(Lz). (D.15)

Moreover, we have that

LP (i)(Lz) = P (i)(z), L∆(Lz) = (prefactor)∆(z). (D.16)

The prefactor cancels out between the numerator and denominator in (D.11) and (D.12).

Thus under S-duality we get that

〈
P (1)

(
1

g
Z

)
P (2)

(
1

g
Z

)〉

G,τ

=

〈
LP (1)

(
1
Lg

LZ

)
LP (2)

(
1
Lg

LZ

)〉

LG,Lτ

(D.17)
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and
〈
P (1)

(
1

g
Z

)
P (2)

(
1

g
Z

)
P (3)

(
1

g
Z

)〉

G,τ

=

〈
LP (1)

(
1
Lg

LZ

)
LP (2)

(
1
Lg

LZ

)
LP (3)

(
1
Lg

LZ

)〉

LG,Lτ

. (D.18)

This implies that the two and three-point functions of chiral primary operators in N = 4

super Yang-Mills transform according to (D.1) and (D.2) under S-duality as conjectured.
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